Bienvenidos
El LEICI es un Instituto de doble dependencia Universidad Nacional de La Plata (UNLP) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) radicado en el Departamento de Electrotecnia de la Facultad de Ingeniería de la UNLP. El LEICI es además un centro asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires. (CICpBA).
Actualmente está compuesto por más de 50 personas entre investigadores, becarios de postgrado y posdoctorales, profesionales de apoyo y personal administrativo.
Objetivos
El Instituto tiene por objetivos la investigación, desarrollo, innovación y transferencia científico / tecnológica en las áreas de Electrónica de Potencia, Instrumentación Electrónica, Control de Sistemas Dinámicos, Procesamiento de Señales y Comunicaciones.
Son también objetivos primordiales la enseñanza y la formación de recursos humanos altamente capacitados para conducir, participar y/o ejecutar proyectos de investigación y desarrollo en los temas enunciados, como así también para desempeñarse en instituciones académicas, organismos oficiales y empresas privadas.
Temas de investigación
Las líneas de trabajo del Instituto son extremadamente ubicuas y frecuentemente asociadas a otras disciplinas. Las líneas prioritarias actuales son:
- control de sistemas de generación eléctrica basados en energías alternativas
- accionamientos eléctricos
- control de procesos químicos
- monitoreo y control de procesos biotecnológicos y sistemas biológicos
- instrumentación biomédica, industrial y científica
- dispositivos de asistencia
- tratamiento de señales de electro y magneto-encefalografía en neurociencias
- procesamiento de señales de radar.
La vinculación estrecha con universidades y centros de investigación del país y del exterior asegura el proceso de actualización científica y un desarrollo adaptado al estado del conocimiento en las áreas de trabajo del instituto.
Anteriores
- Importante distinción a la Dra. Ing. María Inés Valla 4 agosto, 2025
- Defensa de Tesis de Doctorado de Matías Oliva 10 junio, 2025
- Defensa de Tesis de Doctorado de Cecilia Serafini 20 mayo, 2025
- Convocatoria 2025: Premio Prof. Ing. Carlos Frede Christiansen 30 abril, 2025
- Día del Investigador Científico 10 abril, 2025
Novedades
Importante distinción a la Dra. Ing. María Inés Valla
Grupos de Investigación
Grupo Estrategias de Control y Electrónica de Potencia (GECEP)
Se centra en el desarrollo de controladores avanzados, técnicas de estimación y convertidores electrónico para diversos campos de la ingeniería. Entre otros, control y electrónica para generación no contaminante, sistemas híbridos de energía móviles y microredes, y estimación de parámetros de dispositivos de almacenamiento y del sistema pulmonar.
Grupo de Control Aplicado (GCA)
El grupo GCA enfoca su investigación y desarrollos en el modelado, control, optimización y monitoreo de sistemas dinámicos para diversas aplicaciones. Las principales son los procesos industriales, energías renovables, sistemas autónomos y sistemas biológicos.
Grupo Procesamiento Estadístico de Señales (PES)
Se trabaja en la investigación y desarrollo de métodos de procesamiento estadístico de señales provenientes de arreglos de sensores, aplicados a electroencefalografía (EEG), sistemas de radar y la navegación de vehículos basados en sistemas de navegación global por satélite (GNSS).
Grupo de Instrumentación Biomédica, Industrial y Científica (GIBIC)
Se trabaja en la investigación y el desarrollo de estrategias de adquisición y procesamiento de señales, y de técnicas de instrumentación avanzadas en sistemas de tiempo real de aplicación en ingeniería, en particular en física experimental y bioingeniería.
Últimas Publicaciones del LEICI
2025
M. Saavedra; N. Faedo; F. Inthamoussou; F. Mosquera; F. Garelli
Comparative evaluation of data-based estimators for wave-induced force in wave energy converters Artículo de revista
En: J. Ocean Eng. Mar. Energy, 2025, ISSN: 2198-6452.
@article{Saavedra2025,
title = {Comparative evaluation of data-based estimators for wave-induced force in wave energy converters},
author = {M. Saavedra and N. Faedo and F. Inthamoussou and F. Mosquera and F. Garelli},
doi = {10.1007/s40722-025-00427-4},
issn = {2198-6452},
year = {2025},
date = {2025-09-01},
urldate = {2025-09-01},
journal = {J. Ocean Eng. Mar. Energy},
publisher = {Springer Science and Business Media LLC},
abstract = {<jats:title>Abstract</jats:title>
<jats:p>Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.</jats:p>},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
<jats:p>Wave energy conversion technology emerges as a promising approach to renewable energy generation, offering a consistent and predictable power source that complements intermittent renewable energy sources such as solar and wind power. Achieving optimal ocean wave energy absorption requires precise knowledge of the so-called wave excitation force, which is typically estimated through model-based techniques reliant on accurate system descriptions. However, uncertainties inherent to hydrodynamic modelling often limit the reliability of these approaches. To address this challenge, this paper presents a comprehensive evaluation of model-free data-based estimators, for wave excitation torque estimation in Wavestar like wave energy converters (WECs). The study examines various neural network architectures, including static models (feedforward networks) and those incorporating temporal dynamics (recurrent neural networks and long short-term memory networks). The analysis examines the impact of utilising multiple input combinations, ranging from motion variables to configurations enhanced with surrounding wave height measurements from the device’s vicinity. Input selection is guided by correlation analysis and spectral coherence evaluation to ensure physical relevance and practical feasibility. Estimators are trained and tested using experimental data obtained from a comprehensive wave tank campaign emulating diverse sea state conditions. The results demonstrate that architectures incorporating temporal considerations achieve superior performance, particularly under wide-banded sea states. A comparative analysis with a model-based estimator, implemented via a Kalman–Bucy Filter with a harmonic oscillator expansion, highlights the advantages of neural networks, especially under challenging conditions where model-based approaches face significant limitations. These findings underscore the capability of data-based strategies to reduce dependence on potentially complex and uncertain analytical models, offering a promising alternative for improving WEC control systems.</jats:p>
F. L. Da Rosa Jurao; E. Fushimi; F. Garelli
Switched Controllers in Fully Closed Loop Insulin Delivery Systems: Reducing the Trade-Off Between Prandial Control and Safety Artículo de revista
En: Artificial Organs, vol. n/a, no n/a, 2025.
@article{https://doi.org/10.1111/aor.15064,
title = {Switched Controllers in Fully Closed Loop Insulin Delivery Systems: Reducing the Trade-Off Between Prandial Control and Safety},
author = { F. L. Da Rosa Jurao and E. Fushimi and F. Garelli},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/aor.15064},
doi = {https://doi.org/10.1111/aor.15064},
year = {2025},
date = {2025-08-02},
urldate = {2025-08-02},
journal = {Artificial Organs},
volume = {n/a},
number = {n/a},
abstract = {ABSTRACT Background One of the main challenges in control algorithm design for full closed-loop automated insulin delivery systems is the trade-off between the effective compensation of meal-related disturbances and ensuring user safety during the postprandial and fasting periods. Methods This paper proposes and evaluates the performance of a switched tuning strategy, a promising but relatively underexplored solution in this domain. This method employs two distinct tunings of a primary control algorithm: an aggressive tuning for meal compensation and a conservative tuning for fasting periods. The analysis considers implementing the switched strategy for three control algorithms: model predictive control and proportional-derivative control, both widely used for glucose regulation, and a linear quadratic Gaussian control, an optimal algorithm previously validated in clinical settings under a switched structure. Additionally, to obtain a more comprehensive understanding of the switched strategy implications, two nonswitched controllers are implemented for each control algorithm: an aggressive and a conservative tuning strategy. Results The switched strategy significantly improves the trade-off between meal compensation and safety, increasing the time within the target range of 70–180 [mg/dL] for all three algorithms. For proportional-derivative control, the time in range increases from 69.1% with the conservative tuning and 83.1% with the aggressive to 86.6% with the switched structure. For model predictive control, the improvement is from 73.4% and 74.1% to 85.8%. Last, linear quadratic Gaussian control increases from 65.0% and 70.4% to 85.6%. Conclusion The findings suggest that the switched strategy may be a feasible and straightforward approach for enhancing meal compensation without increasing the risk of postprandial hypoglycemia in people with diabetes.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Saavedra; F. Inthamoussou; E. Fushimi; F. Garelli
Identification of Physical Activity Type in People with Diabetes: A Spectrogram-Based Approach Artículo de revista
En: Diabetes Technology and Obesity Medicine, vol. 1, no 1, pp. 361-373, 2025.
@article{doi:10.1177/29941520251358842,
title = {Identification of Physical Activity Type in People with Diabetes: A Spectrogram-Based Approach},
author = { M. Saavedra and F. Inthamoussou and E. Fushimi and F. Garelli},
url = {https://www.liebertpub.com/doi/abs/10.1177/29941520251358842},
doi = {10.1177/29941520251358842},
year = {2025},
date = {2025-07-21},
urldate = {2025-01-01},
journal = {Diabetes Technology and Obesity Medicine},
volume = {1},
number = {1},
pages = {361-373},
abstract = {Background: Individuals with type 1 diabetes (T1D) require close glucose monitoring to prevent both short- and long-term complications. Physical activity (PA) is a significant source of variability in metabolic dynamics, leading to glycemic fluctuations that depend on the type, intensity, and duration of the exercise. Accurately monitoring and classifying the type of PA is crucial for optimizing glycemic control and minimizing the risk of hypoglycemia. Method: This study utilizes the largest clinical trial of PA in people with T1D to date, the Type 1 Diabetes and Exercise Initiative (T1DEXI), which included both structured and unstructured PA sessions, to develop an online classification approach for identifying the type of PA (aerobic, interval, resistance). A computationally efficient convolutional neural network (CNN) was trained on time–frequency representations (spectrograms) of step count and heart rate signals, readily available from wearable devices, from the structured PA sessions of the T1DEXI dataset. The proposed methodology presents an ad hoc process for designing the spectrograms based on the CNN architecture to optimize the classifier’s performance. Results: The CNN-based classification approach was implemented using spectrograms of 5- and 30-min signals, resulting in two classifiers that achieve high classification accuracy when evaluated on the structured PA sessions. The 5-min classifier was then applied to unstructured PA sessions, where the predicted distribution of glucose changes for the activity types was consistent with clinical evidence. Conclusion: These results demonstrate the potential of the proposed approach for its integration into decision support systems or automated insulin delivery systems, enabling improved glucose management during exercise in T1D.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Celesti; G. Papini; E. Pasta; Y. Peña-Sanchez; F. Mosquera; F. Ferri; N. Faedo
Experimental investigation of wave-to-force modelling uncertainty for wave energy converters Artículo de revista
En: Mechanical Systems and Signal Processing, 2025.
@article{10.1016/j.ymssp.2025.112323,
title = {Experimental investigation of wave-to-force modelling uncertainty for wave energy converters},
author = {M. Celesti and G. Papini and E. Pasta and Y. Peña-Sanchez and F. Mosquera and F. Ferri and N. Faedo},
doi = {10.1016/j.ymssp.2025.112323},
year = {2025},
date = {2025-01-01},
journal = {Mechanical Systems and Signal Processing},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
E. Fushimi; F. Bianchi; H. De Battista; F. Garelli
Robust dual-hormone controller for full closed-loop glucose regulation in people with type 1 diabetes: An in silico study Artículo de revista
En: Biocybernetics and Biomedical Engineering, 2025.
@article{10.1016/j.bbe.2025.05.004,
title = {Robust dual-hormone controller for full closed-loop glucose regulation in people with type 1 diabetes: An in silico study},
author = {E. Fushimi and F. Bianchi and H. De Battista and F. Garelli},
doi = {10.1016/j.bbe.2025.05.004},
year = {2025},
date = {2025-01-01},
journal = {Biocybernetics and Biomedical Engineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
B. Ozaslan; E. Aiello; E. Fushimi; F. Doyle; E. Dassau
Personalized Model Identification for Glucose Dynamics from Clinical Data with Incomplete Inputs Artículo de revista
En: IEEE Transactions on Biomedical Engineering, 2025.
@article{10.1109/tbme.2025.3530711,
title = {Personalized Model Identification for Glucose Dynamics from Clinical Data with Incomplete Inputs},
author = {B. Ozaslan and E. Aiello and E. Fushimi and F. Doyle and E. Dassau},
doi = {10.1109/tbme.2025.3530711},
year = {2025},
date = {2025-01-01},
journal = {IEEE Transactions on Biomedical Engineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
K. Yatsuda; M. Fernández-Corazza; W. Yu; J. Gomez-Tames
Population-optimized electrode montage approximates individualized optimization in transcranial temporal interference stimulation Artículo de revista
En: Computers in Biology and Medicine, 2025.
@article{10.1016/j.compbiomed.2025.110223,
title = {Population-optimized electrode montage approximates individualized optimization in transcranial temporal interference stimulation},
author = {K. Yatsuda and M. Fernández-Corazza and W. Yu and J. Gomez-Tames},
doi = {10.1016/j.compbiomed.2025.110223},
year = {2025},
date = {2025-01-01},
journal = {Computers in Biology and Medicine},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Walker; M. Fernández-Corazza; S. Turovets; L. Beltrachini
Electrical impedance tomography meets reduced order modelling: a framework for faster and more reliable electrical conductivity estimations Artículo de revista
En: Journal of Neural Engineering, 2025.
@article{10.1088/1741-2552/adab20,
title = {Electrical impedance tomography meets reduced order modelling: a framework for faster and more reliable electrical conductivity estimations},
author = {M. Walker and M. Fernández-Corazza and S. Turovets and L. Beltrachini},
doi = {10.1088/1741-2552/adab20},
year = {2025},
date = {2025-01-01},
journal = {Journal of Neural Engineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Castañeda; S. Nuñez; M. Jamilis; H. De Battista
Enhancement of Lipid Production in Rhodosporidium toruloides: Designing Feeding Strategies Through Dynamic Flux Balance Analysis Artículo de revista
En: Fermentation, 2025.
@article{10.3390/fermentation11060354,
title = {Enhancement of Lipid Production in Rhodosporidium toruloides: Designing Feeding Strategies Through Dynamic Flux Balance Analysis},
author = {M. Castañeda and S. Nuñez and M. Jamilis and H. De Battista},
doi = {10.3390/fermentation11060354},
year = {2025},
date = {2025-01-01},
journal = {Fermentation},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
F. Amor; M. Haberman; M. Jamilis; F. Guerrero; H. De Battista
Design of a Novel Very-Low Input Capacitance High-Bandwidth Buffer for a Biomass Sensor Artículo de revista
En: IEEE Sensors Journal, 2025.
@article{10.1109/jsen.2024.3486534,
title = {Design of a Novel Very-Low Input Capacitance High-Bandwidth Buffer for a Biomass Sensor},
author = {F. Amor and M. Haberman and M. Jamilis and F. Guerrero and H. De Battista},
doi = {10.1109/jsen.2024.3486534},
year = {2025},
date = {2025-01-01},
journal = {IEEE Sensors Journal},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
P. Fornaro; P. Puleston
A Perspective on the Integration of Energy Storage Technologies in Multi-energy Systems Proceedings Article
En: 2025.
@inproceedings{10.1007/978-3-031-69015-0_18,
title = {A Perspective on the Integration of Energy Storage Technologies in Multi-energy Systems},
author = {P. Fornaro and P. Puleston},
doi = {10.1007/978-3-031-69015-0_18},
year = {2025},
date = {2025-01-01},
urldate = {2025-01-01},
journal = {Green Energy and Technology},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
E. Spinelli; V. Catacora; F. Guerrero; M. Haberman
Enhancing CMRR in Fully Differential Amplifiers via Power Supply Bootstrapping Artículo de revista
En: Chips, 2025.
@article{10.3390/chips4020027,
title = {Enhancing CMRR in Fully Differential Amplifiers via Power Supply Bootstrapping},
author = {E. Spinelli and V. Catacora and F. Guerrero and M. Haberman},
doi = {10.3390/chips4020027},
year = {2025},
date = {2025-01-01},
journal = {Chips},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2024
P. Fornaro; F. Mosquera; P. Puleston; C. Evangelista; J. Ringwood
Homogeneous Filtering Unknown Input Observer for Wave Energy Applications Artículo de revista
En: 2024 IEEE 63rd Conference on Decision and Control (CDC), 2024.
@article{10.1109/cdc56724.2024.10886157,
title = {Homogeneous Filtering Unknown Input Observer for Wave Energy Applications},
author = {P. Fornaro and F. Mosquera and P. Puleston and C. Evangelista and J. Ringwood},
doi = {10.1109/cdc56724.2024.10886157},
year = {2024},
date = {2024-01-01},
journal = {2024 IEEE 63rd Conference on Decision and Control (CDC)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Haberman; E. Spinelli; F. Reverter
A Transformer-Based Front-End Circuit for Grounded Capacitive Sensors with Square-Wave Excitation Artículo de revista
En: Proceedings, 2024.
@article{10.3390/proceedings2024097014,
title = {A Transformer-Based Front-End Circuit for Grounded Capacitive Sensors with Square-Wave Excitation},
author = {M. Haberman and E. Spinelli and F. Reverter},
doi = {10.3390/proceedings2024097014},
year = {2024},
date = {2024-01-01},
journal = {Proceedings},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
P. Fornaro; J. Ringwood
Hybrid Optimal Control for an Active Mechanical Motion Rectifier for Wave Energy Converters via Separation Principle Artículo de revista
En: 2024 European Control Conference (ECC), 2024.
@article{10.23919/ecc64448.2024.10590991,
title = {Hybrid Optimal Control for an Active Mechanical Motion Rectifier for Wave Energy Converters via Separation Principle},
author = {P. Fornaro and J. Ringwood},
doi = {10.23919/ecc64448.2024.10590991},
year = {2024},
date = {2024-01-01},
journal = {2024 European Control Conference (ECC)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
P. Fornaro; J. Ringwood
On the Controllability of an Active Mechanical Motion Rectifier for Wave Energy Converters Artículo de revista
En: 2024 American Control Conference (ACC), 2024.
@article{10.23919/acc60939.2024.10644342,
title = {On the Controllability of an Active Mechanical Motion Rectifier for Wave Energy Converters},
author = {P. Fornaro and J. Ringwood},
doi = {10.23919/acc60939.2024.10644342},
year = {2024},
date = {2024-01-01},
journal = {2024 American Control Conference (ACC)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
F. Mosquera; P. Fornaro; P. Puleston; C. Evangelista; J. Ringwood
A Sliding Mode-Based Tracking Observer for Excitation Force Estimation in Wave Energy Systems Artículo de revista
En: 2024 IEEE Conference on Control Technology and Applications (CCTA), 2024.
@article{10.1109/ccta60707.2024.10666656,
title = {A Sliding Mode-Based Tracking Observer for Excitation Force Estimation in Wave Energy Systems},
author = {F. Mosquera and P. Fornaro and P. Puleston and C. Evangelista and J. Ringwood},
doi = {10.1109/ccta60707.2024.10666656},
year = {2024},
date = {2024-01-01},
journal = {2024 IEEE Conference on Control Technology and Applications (CCTA)},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
E. Fushimi; E. Aiello; S. Cho; M. Riddell; R. Gal; C. Martin; S. Patton; M. Rickels; I. Francis J. Doyle
Online Classification of Unstructured Free-Living Exercise Sessions in People with Type 1 Diabetes Artículo de revista
En: Diabetes Technology & Therapeutics, 2024.
@article{10.1089/dia.2023.0528,
title = {Online Classification of Unstructured Free-Living Exercise Sessions in People with Type 1 Diabetes},
author = {E. Fushimi and E. Aiello and S. Cho and M. Riddell and R. Gal and C. Martin and S. Patton and M. Rickels and I. Francis J. Doyle},
doi = {10.1089/dia.2023.0528},
year = {2024},
date = {2024-01-01},
journal = {Diabetes Technology & Therapeutics},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
F. Amor; M. Haberman; M. Jamilis; F. Guerrero; H. De Battista
Design of a novel very-low input capacitance high-bandwidth buffer for a biomass sensor Proceedings Article
En: 2024.
@inproceedings{10.36227/techrxiv.172599893.36848197/v1,
title = {Design of a novel very-low input capacitance high-bandwidth buffer for a biomass sensor},
author = {F. Amor and M. Haberman and M. Jamilis and F. Guerrero and H. De Battista},
doi = {10.36227/techrxiv.172599893.36848197/v1},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
M. Castañeda; S. Nuñez; M. Jamilis; H. De Battista
Computational assessment of lipid production in Rhodosporidium toruloides in two‐stage and one‐stage batch bioprocesses Artículo de revista
En: Biotechnology and Bioengineering, 2024.
@article{10.1002/bit.28579,
title = {Computational assessment of lipid production in Rhodosporidium toruloides in two‐stage and one‐stage batch bioprocesses},
author = {M. Castañeda and S. Nuñez and M. Jamilis and H. De Battista},
doi = {10.1002/bit.28579},
year = {2024},
date = {2024-01-01},
journal = {Biotechnology and Bioengineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
N. Faedo; F. Mosquera; E. Pasta; G. Papini; Y. Peña-Sanchez; C. Evangelista; F. Ferri; J. Ringwood; P. Puleston
Experimental assessment of combined sliding mode & moment-based control (SM2C) for arrays of wave energy conversion systems Artículo de revista
En: Control Engineering Practice, 2024.
@article{10.1016/j.conengprac.2023.105818,
title = {Experimental assessment of combined sliding mode & moment-based control (SM2C) for arrays of wave energy conversion systems},
author = {N. Faedo and F. Mosquera and E. Pasta and G. Papini and Y. Peña-Sanchez and C. Evangelista and F. Ferri and J. Ringwood and P. Puleston},
doi = {10.1016/j.conengprac.2023.105818},
year = {2024},
date = {2024-01-01},
journal = {Control Engineering Practice},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
N. Faedo; F. Carapellese; G. Papini; E. Pasta; F. Mosquera; F. Ferri; T. Brekken
An Anti-Windup Mechanism for State Constrained Linear Control of Wave Energy Conversion Systems: Design, Synthesis, and Experimental Assessment Artículo de revista
En: IEEE Transactions on Sustainable Energy, 2024.
@article{10.1109/tste.2023.3320190,
title = {An Anti-Windup Mechanism for State Constrained Linear Control of Wave Energy Conversion Systems: Design, Synthesis, and Experimental Assessment},
author = {N. Faedo and F. Carapellese and G. Papini and E. Pasta and F. Mosquera and F. Ferri and T. Brekken},
doi = {10.1109/tste.2023.3320190},
year = {2024},
date = {2024-01-01},
journal = {IEEE Transactions on Sustainable Energy},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
E. Pasta; G. Papini; Y. Peña-Sanchez; F. Mosquera; F. Ferri; N. Faedo
Data-based modelling of arrays of wave energy systems: Experimental tests, models, and validation Artículo de revista
En: Control Engineering Practice, 2024.
@article{10.1016/j.conengprac.2024.105949,
title = {Data-based modelling of arrays of wave energy systems: Experimental tests, models, and validation},
author = {E. Pasta and G. Papini and Y. Peña-Sanchez and F. Mosquera and F. Ferri and N. Faedo},
doi = {10.1016/j.conengprac.2024.105949},
year = {2024},
date = {2024-01-01},
journal = {Control Engineering Practice},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
G. Papini; E. Pasta; Y. Peña-Sanchez; F. Mosquera; D. García-Violini; F. Ferri; N. Faedo
Assessment and validation of wave excitation force estimators in operative conditions Artículo de revista
En: Control Engineering Practice, 2024.
@article{10.1016/j.conengprac.2024.106019,
title = {Assessment and validation of wave excitation force estimators in operative conditions},
author = {G. Papini and E. Pasta and Y. Peña-Sanchez and F. Mosquera and D. García-Violini and F. Ferri and N. Faedo},
doi = {10.1016/j.conengprac.2024.106019},
year = {2024},
date = {2024-01-01},
journal = {Control Engineering Practice},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. C. Serafini; E. Fushimi; F. Garelli
Reinforcement Learning Adjustment of Conventional Insulin Therapy for People with Type 1 Diabetes Proceedings Article
En: 2024.
@inproceedings{10.1109/argencon62399.2024.10735891,
title = {Reinforcement Learning Adjustment of Conventional Insulin Therapy for People with Type 1 Diabetes},
author = {M. C. Serafini and E. Fushimi and F. Garelli},
doi = {10.1109/argencon62399.2024.10735891},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {2024 7th IEEE Biennial Congress of Argentina, ARGENCON 2024},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
M. C. Serafini; N. Rosales; F. Garelli
Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization Artículo de revista
En: Computer Methods in Biomechanics and Biomedical Engineering, 2024.
@article{10.1080/10255842.2023.2241945,
title = {Auto adaptation of closed-loop insulin delivery system using continuous reward functions and incremental discretization},
author = {M. C. Serafini and N. Rosales and F. Garelli},
doi = {10.1080/10255842.2023.2241945},
year = {2024},
date = {2024-01-01},
journal = {Computer Methods in Biomechanics and Biomedical Engineering},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
F. Mosquera; N. Faedo; C. Evangelista; J. Ringwood; P. Puleston
Wave Energy Optimal Control Structure With Second-Order Sliding Mode Tracking: Hardware-in-the-Loop Assessment Artículo de revista
En: IEEE Transactions on Sustainable Energy, 2024.
@article{10.1109/tste.2023.3343995,
title = {Wave Energy Optimal Control Structure With Second-Order Sliding Mode Tracking: Hardware-in-the-Loop Assessment},
author = {F. Mosquera and N. Faedo and C. Evangelista and J. Ringwood and P. Puleston},
doi = {10.1109/tste.2023.3343995},
year = {2024},
date = {2024-01-01},
journal = {IEEE Transactions on Sustainable Energy},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
D. Andrinolo; M. Fernández-Corazza; C. Muravchik
Optimized Transcranial Brain Stimulation for Tumor Treating Fields Proceedings Article
En: 2024.
@inproceedings{10.1007/978-3-031-61973-1_2,
title = {Optimized Transcranial Brain Stimulation for Tumor Treating Fields},
author = {D. Andrinolo and M. Fernández-Corazza and C. Muravchik},
doi = {10.1007/978-3-031-61973-1_2},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
J. Gomez-Tames; M. Fernández-Corazza
Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans Artículo de revista
En: Journal of Clinical Medicine, 2024.
@article{10.3390/jcm13113084,
title = {Perspectives on Optimized Transcranial Electrical Stimulation Based on Spatial Electric Field Modeling in Humans},
author = {J. Gomez-Tames and M. Fernández-Corazza},
doi = {10.3390/jcm13113084},
year = {2024},
date = {2024-01-01},
journal = {Journal of Clinical Medicine},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
S. Collavini; J. Pérez; E. Berjano; M. Fernández-Corazza; S. Oddo; R. Irastorza
Impact of surrounding tissue-type and peri-electrode gap in stereoelectroencephalography guided (SEEG) radiofrequency thermocoagulation (RF-TC): a computational study Artículo de revista
En: International Journal of Hyperthermia, 2024.
@article{10.1080/02656736.2024.2364721,
title = {Impact of surrounding tissue-type and peri-electrode gap in stereoelectroencephalography guided (SEEG) radiofrequency thermocoagulation (RF-TC): a computational study},
author = {S. Collavini and J. Pérez and E. Berjano and M. Fernández-Corazza and S. Oddo and R. Irastorza},
doi = {10.1080/02656736.2024.2364721},
year = {2024},
date = {2024-01-01},
journal = {International Journal of Hyperthermia},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Colombo; J. Ureña; Á. Hernández; C. Marziani; M. Mayosky
A comparison between autocorrelation- and crosscorrelation-based coarse frame synchronization schemes for OFDM-PLC systems Artículo de revista
En: Physical Communication, 2024.
@article{10.1016/j.phycom.2024.102419,
title = {A comparison between autocorrelation- and crosscorrelation-based coarse frame synchronization schemes for OFDM-PLC systems},
author = {M. Colombo and J. Ureña and Á. Hernández and C. Marziani and M. Mayosky},
doi = {10.1016/j.phycom.2024.102419},
year = {2024},
date = {2024-01-01},
journal = {Physical Communication},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
H. Fanchiotti; C. García Canal; M. Mayosky; A. Pérez; A. Veiga
Quantum and classical dynamics correspondence and the brachistochrone problem Artículo de revista
En: Physical Review A, 2024.
@article{10.1103/physreva.110.042219,
title = {Quantum and classical dynamics correspondence and the brachistochrone problem},
author = {H. Fanchiotti and C. García Canal and M. Mayosky and A. Pérez and A. Veiga},
doi = {10.1103/physreva.110.042219},
year = {2024},
date = {2024-01-01},
urldate = {2024-01-01},
journal = {Physical Review A},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
M. Saavedra; F. Inthamoussou; F. Garelli
Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections Artículo de revista
En: Journal of Renewable and Sustainable Energy, 2024.
@article{10.1063/5.0216741,
title = {Model-free dynamic estimation of fore-aft and side-to-side wind turbine tower deflections},
author = {M. Saavedra and F. Inthamoussou and F. Garelli},
doi = {10.1063/5.0216741},
year = {2024},
date = {2024-01-01},
journal = {Journal of Renewable and Sustainable Energy},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Más publicaciones